An Authoring Process to Construct Docker Containers
to Help Instructors Develop Cybersecurity Exercises™

Jack Cook!, Richard Weiss?, Jens Mache?, Carlos Garcia Moran®, Justin
Wang?

'New York University

Brooklyn, NY 11201
jcc98380nyu. edu
2 The Evergreen State College
Olympia, WA 98505
weissr@evergreen.edu
3Lewis & Clark College
Portland, OR 97219
{jmache, carlos}@lclark.edu
Marquette University
Milwaukee, WI 53233
hsiaoan.wang@marquette.edu

Abstract

As instructors, we are more likely to use exercises that we can modify
or that we helped to develop. The problem we address is how to help
instructors create their own hands-on exercises. This paper describes
the authoring process for the creation of cybersecurity exercises and the
experience of creating two very different exercises. One of these exercises
is about vulnerable Web services and leverages the LAMP stack and the
other is about cryptography and ransomware and uses VNC. They both
use Terraform to create Docker containers. We address the issues of
creating exercises that involve multiple containers and can be run in a
cloud environment, as well as on a single server.

*Copyright ©2018 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.



This paper describes the process of creating these cybersecurity ex-
ercises in our framework. The streamlined process enabled the develop-
ment of totally new exercises much faster than previously experienced.
In the case of the ransomware exercise, it was two weeks from start to
finish, compared to months for previous exercises.

1 Introduction

The development of new security exercises is a cornerstone to cybersecurity
education. A number of platforms for teaching cybersecurity through hands-
on exercises have been developed in last 15 years. Many of them have more
than a dozen exercises. Yet, they are not truly scalable from the perspective
of developing a community unless they facilitate the ability of knowledgeable
users to modify existing exercises or contribute new ones. There are only a
couple of frameworks that are designed to make this easy. In this paper, we
examine the creation of two very different exercises in order to reflect on how
to help instructors to create their own exercises in the domain of cybersecurity.
Cybersecurity exercises have some special requirements: 1) exercises may rely
on installing specific versions of software, including ones with vulnerabilities, 2)
software environments need to be complete, i.e. more than just the vulnerable
applications, and 3) exercises should run on a variety of platforms, e.g. AWS,
Azure, Google Cloud and desktop.

Even when a platform provides help for creating exercises, there still is
going to be a learning curve. We have tried to make that learning curve as
gentle as possible in our platform. EDURange uses two powerful tools Docker
containers and Terraform. These are commonly used in IT for creating and
configuring flexible computing environments. The use of Docker containers is
becoming more popular than the use of virtual machines (VMs), especially
when multiple virtual computing environments would be needed. Similarly,
Terraform is becoming popular because it works with multiple cloud frame-
works to configure hardware and software and interacts well with Docker. We
have constructed a layer on top of both of those, so as to minimize the pre-
requisite knowledge that instructors would need in order to create or modify
exercises. A prerequisite that instructors would need is some familiarity with
the Linux command line interface. However, we believe that this is less of an
issue for most cybersecurity instructors. Thus, we have not developed a graph-
ical interface for creating exercises, although that would certainly be possible.

The two new exercises that we developed were Ransomware and WebFu.
The learning goal of Ransomware is to teach some of the basics of cryptog-
raphy in a context that would be very clear and motivating to students. It
also promotes the security mindset because it illustrates a failure mode. One
generally thinks of cryptography as protecting secret information, but in this



context it is about abusing it to prevent the owner from accessing data. WebFu
teaches the basics of SQL injection. This exercise was developed as a gentle
introduction to the topic and as our first attempt at a user interface that is
different from the command line. While there are many CTF challenges that
are based on SQL injection, we wanted an exercise for an introductory Web
security course that would use a Web interface rather than the command line.
In our experience, students sometimes struggle because of their limited under-
standing of SQL databases and while there are many tutorials on SQL, they
generally focus on how to use the language rather than how to abuse it. We
also wanted students to be aware of code injection and to recognize that code
is also data. Both of these exercises demonstrate that EDURange can accom-
modate a wider range of exercises, not just ones limited to using the command
line interface in a bash shell.

2 Related Work

The other academic frameworks that we consider are Labtainers, DETERLab,
SecKnitKit, Security Injections, NICE-challenge, and KYPO.

Of these, the only one that has addressed the issue of instructor-generated
scenarios is Labtainers [7]. Labtainers has a collection of base Docker images
that can be combined in a variety of ways to produce new exercises using
Docker-Compose. This has some pros and cons. One advantage is that they
have implemented a GUI that is aware of the base containers and allows the user
to select them and compose them. The disadvantage is that if the user wants
to go beyond the existing types of exercise, then they need to be familiar with
Docker-Compose syntax, craft a unique Dockerfile, and also define networking
rules from scratch. Labtainers can be used anywhere that has Docker installed,
which could be a laptop or a Cloud environment.

In comparison, EDURange [9] takes a hybrid approach to this problem, by
providing templates for instructors to modify while also allowing the use of
custom container images. As a result, instructors can either provide their own
pre-configured images, or extend the base SSH server with a list of their own
bash scripts. One disadvantage is that there is no GUI, so exercise designers
need to be familiar with basic Docker commands. Nevertheless, they don’t
need to know Docker Compose and instead can use JSON to combine Docker
commands. EDURange can be used anywhere that has Docker installed, which
could be a laptop or a Cloud environment.

DETERLab [4] also allows instructors to design their own exercises. It
uses a combination of bash scripts and NS scripts. The NS scripts are not a
commonly used format. There is not much documentation on the procedure
for creating new exercises. The platform is tied to specific hardware. While it



is free, there are resource limitations.

NICE-challenge has on the order of 100 exercises and has a staff of de-
velopers. The advantage for the instructor is that there is no expense and
little effort to use the exercises. The disadvantage is that it is not possible
for instructors to modify or contribute exercises or to host exercises on their
own hardware resources. As with DETERLab this limits scaling because the
hardware resources are not easily expanded.

Security Injections [6], SecKnitKit [5], and SEED [1] are also valuable.
While, an instructor cannot contribute or modify exercises, they are scalable
in terms of the number of instances of a course. Security Injections does not
require provisioning of VMs or containers, so it is easier to use than the other
systems. SecKnitKit does use VMs that can be run locally on the instructor’s
hardware. SEED has one large VM that the students run and an associated
textbook.

KYPO [8] is a very interesting system in terms of the exercises provided,
and it is open source. However, it is not easy for instructors to add exercises
or to run it on their own hardware.

There are several free non-academic frameworks such as Portswigger and
overthewire.org. Instructors cannot modify or extend them, and they are gen-
erally harder to integrate into a course, in terms of assessment and prerequisite
material.

The tools that make EDURange extensible, portable and scalable for in-
structors are Docker and Terraform. Section 3 steps through the process one
would go through in EDURange to create a new exercise. Then, in sections 4
and 5, we discuss the particular requirements for those exercises.

3 Recipe for Creating New Cybersecurity exercises

Developing good hands-on exercises and homework assignments can be a dif-
ficult and time-intensive task. One standard method is backward design [10].
The author of an exercise would start with specifying the learning goals and
develop a high-level description. They would translate the goals into concrete
objectives and create a plan for assessing them. In the case of hands-on ex-
ercises, the objectives and assessment are often realized as tasks and criteria
for determining that those tasks have been completed satisfactorily. Once the
tasks have been described, they need to be implemented by creating the vir-
tual hardware and software environment. In EDURange, we use a collection of
containers running on Ubuntu. The author of a scenario would describe each
container in detail. They would specify the software and services they should
provide. They specify accounts for students and services, and create files/arti-
facts that the students need to retrieve. The author also needs to configure the



network, e.g. assigning IP addresses and redirecting ports. All of this should
be done using scripts (mostly bash), so that it is easy to modify the exercise
and create new containers.

Another approach that we have seen is to start with an existing virtual
environment, where the instructor wants students to learn to work in that en-
vironment. In this approach, the instructor must then create the goals and
learning objectives, usually based on introspection to understand why that en-
vironment is important and what the essential goals and objectives are. Then,
the author could generate tasks that would demonstrate those objectives in
that environment. An example of such an environment is Metasploit on Kali
Linux. Metasploit is a penetration testing framework. It is easy to find VMs
for both Kali (the attacker) and Metasploitable (the target). Both of these
can be ported to containers and networked together. Student accounts can be
created in the Kali container.

Both of these approaches are reasonable. In practice, we often see a hy-
brid or middle-first approach where there are some ideas for exercises that are
attractive, and they suggest goals and objectives. The part that EDURange
can help with in both of these approaches is to make it easy to configure the
virtual environment.

4 Developing an SQL-injection exercise (WebFu) using
the LAMP stack

The goal of this exercise was to teach SQL injection in a hands-on fashion. This
led to defining objectives, such as dumping tables from a database and bypass-
ing a basic Web Application Firewall (WAF). These needed to be translated
into an implementation in a concrete environment. For WebFu, the author
chose the MySQL database system, and created the database schema and then
the queries. The next section describes the experience of applying the tools in
EDURange.

4.1 Applying the Tools

First, the author copied Terraform templates from another scenario and changed
the container names to match the new scenario name. The author also copied
the YAML file containing the assessment questions for the students and the
Markdown file containing the scenario’s student guide. Of course, the text in
these files needed to be changed for the new scenario, but that was not diffi-
cult. Next, the author made a copy of the existing EDURange base image from
DockerHub, which is based on a minimal Ubuntu installation. The author then
set up a LAMP stack by extending the image with a) a MySQL database server;



b) an Apache web server; and c) a PHP installation. These elements formed
the infrastructure of the web application. After populating the database tables
with data (made up of public datasets and the hidden artifacts or flags), the
author pushed this modified image to EDURange DockerHub repository and
edited a single line in the Terraform template to invoke it. Lastly, the author
wrote a bash script for starting the MySQL and Apache services at scenario
launch time and added it to the JSON file. The development of this infras-
tructure took about a month (the author was a full-time student and this was
a side-project). However, this set up can now be reused to create a wide range
of scenarios for practising web security auditing skills. Potential labs include a
website vulnerable to Cross-site Request Forgery (CSRF), Server-side Request
Forgery (SSRF), Cross-site scripting (XSS), Local File Inclusion (LFI), and
many other techniques. With the current infrastructure-as-code, the only task
left to the author is writing or copying the vulnerable application(s).

On the scenario’s development, it must be said that gaining familiarity
with the Docker workflow was challenging at first. This was where most of
the time was spent, since the author had a background in Linux system ad-
ministration, but not in container-related technologies such as Docker. Every
time the Docker image was changed, a commit needed to be made for the new
container which resulted in a new image. Then, this image had to be tagged
and pushed to the DockerHub repository. Finally, the instance of EDURange
had to pull from the remote repository to update its changes. This is similar
to Git’s workflow, and the method of container deployment results in an agile
and effective process. Once the author became familiar with this, the process
went more quickly.

When trying to deploy this exercise in the classroom, the author ran into
an unexpected problem. The exercise was being run on a cloud environment,
but students needed to connect through the school’s network through HTTP.
Students were experiencing problems connecting, and it turned out that an
internal firewall was blocking malicious traffic (i.e., the SQL injection strings)
over plain-text HTTP. The solution was to use HT'TPS, but we wanted to avoid
requiring an instructor to create and deploy an SSL/TLS certificate. Using
Terraform’s "bind" property for SSL support and redirecting ports (from the
container to the host) were the most significant changes. Using "bind" allowed
us to easily set up HTTPS for the web application. The Let’s Encrypt directory
with the certificate and the private key on the host VM was made available to
the guest container through a bind mount. This removed the need for creating
and maintaining additional SSL certificates. What’s more important about
this, is that the whole process occurs at the scenario’s creation time, thus not
having the private key stored in the repository’s image, ensuring confidentiality.
Lastly, the port redirection implemented with the Terraform API spared us



from having to write and maintain iptables rules. This was particularly helpful
due to how easy it was to add redirection rules in the Terraform file.

4.2 Scripts and Files

This exercise required a working database. The tables were created using
scripts. How and where to run the scripts was specified in a JSON file. The
author found it is easy to use an existing file from another exercise as a tem-
plate, but ideally this would be produced by a user interface that would prompt
the user for the information and produce the JSON file. The JSON file defines
a list of the containers to be provisioned for this scenario, as well as three
categories of other files that are used by Terraform to create the container:
user files, system files, and global files. For each type of file, Terraform will
take different actions to copy or execute them in order to prepare the scenario
environment. Terraform copies a list of "User Files" into each students’ home
directory, "System Files" are executed once at scenario launch time for system
configuration, and "Global Files" are added to the "/bin" folder so they can be
run in a bash shell.

4.3 Using Docker and Terraform in WebFu

Terraform is a scripting platform most commonly used by system administra-
tors and cloud/DevOps engineers to create and configure (provision) virtual
machines (VMs) In the case where networks of VMs are needed, Terraform
can be used with a VM orchestration configuration file which is similar to the
Docker YAML-based language for defining networks of containers. One of the
common uses of Terraform is to modify the state of a VM running on a Cloud
by applying rules while the VM is running. This takes the place of the ad-
ministrator logging in to all of the VMs in the network and running update
commands. However, this is not how we are using it. Instead, we focus on
rapidly setting up containers and configuring them.

Our general approach is to create a base Docker image and write configura-
tion files to customize the image for each specific exercise. One could imagine
using Docker scripts to do this, but there are potential problems with synchro-
nization. For example, when configuring a network, some steps are dependent
on others. Instead, EDURange uses Terraform scripts to create containers and
network them together. In this case, the network must be configured before
the containers can use it, otherwise there will be errors. Docker scripts do not
provide a simple and reliable way to do that, while Terraform does. The Ter-
raform scripts can be generated by EDURange as JSON files. This makes it
possible to implement a user interface that would make it easier for instructors
and authors to create their own scenarios. In EDURange currently, we have



defined our exercises using Terraform templates that can be copied and ad-
justed. At the lowest level, this allows exercise developers to write bash scripts
which modify an existing docker image to create the desired environment.

In practice, once contributors have written their desired scripts, they can
just list them in JSON format to apply them and extend the docker image. This
can be contrasted with other testbeds, in which manual editing of a Dockerfile
or a NS file is required in addition to preparing low level scripts. Alternatively,
authors can create their own Docker images and incorporate them by modifying
a single line to reference them.

Two Terraform templates are used to configure the virtual network. One of
these templates defines how the host appears to the external network. It defines
the IP address and external network, allowing Docker to expose ports publicly,
as well as an internal network for hosting potentially vulnerable containers.
Secondly, at least a single container Terraform file must be copied, which in
the case of most EDURange exercises is the file "nat.tf.json". All of this can
and will be automated. This file provisions a container with a basic SSH server
running. The container is connected to both the external and internal networks,
and Terraform will automatically add any of the students’ user accounts to it,
as well as any additional scripts listed in the JSON User Files. For all of
the base Docker containers, the OpenSSH package must be installed because
Terraform uses it to install files. For most of the exercises, SSH is also used
by students to interact with the container. In one of the new exercises, VNC
is used for student interaction.

At this point, with a new folder created and templates copied, contributors
can make a choice of how to proceed based on the requirements of their scenario.
If their scenario does not require the installation of new software or specialized
containers beyond the capabilities of the base SSH server, then they can write
bash scripts and list files in the JSON description file as their only means of
customizing the scenario. On the other hand, if they need containers that are
running databases, web servers, or other complex applications, then they can
choose to build a Docker image that fulfills their requirements and list that
image in the Terraform file instead of writing any configuration scripts.

With those steps done, the scenario would be ready to be tested. In the
remainder of this paper, we describe the experience of a different author in
creating a ransomware exercise.

5 Developing a Ransomware Exercise

In the midst of ever increasing incidents that are caused by ransomware attacks
around the world, it is critical for students who are learning about cyberse-
curity to understand that a ransomware attack is based on asymmetric key



encryption. This exercise mimics the execution of a ransomware attack. The
goals are for students to learn how an adversary can weaponize public key
cryptography and how that can be deployed on a vulnerable system. The
newly added ransomware exercise introduces students to the foundations of
ransomware and asymmetric key encryption. Through this scenario, the stu-
dents learn how asymmetric key pairs can be weaponized and how end users
can potentially stop such an attack by interrupting the corresponding cyber
kill-chain.

5.1 Converting an Existing Exercise with Novel Requirements

This is an example of converting an exercise that was developed independently
and then ported to EDURange. The first version of the exercise was devel-
oped on Windows [3]. It consisted mainly of a collection of Python scripts
that installed a key pair, encrypted files, popped up some windows, and then
decrypted the files if the user complied with some file modifications. The au-
thor developed this into an exercise with learning objectives and tested it on
a Docker container for Windows. The last step was to integrate the container
into EDURange.

We made some adjustments and converted the script into a Linux compat-
ible program to ensure that it can be deployed within EDURange. We also
adapted an existing ubuntu-VNC desktop docker container [2] to make the ex-
perience more realistic while providing the users a visual effect as the program
gets executed. This was a significant extension because the previous exercises
had only used the command line interface with SSH, so this involved a major
change to exercise structure. The authoring process took about two weeks
(part-time) starting from the Python scripts for Windows.

6 Results

The development of the SQL injection exercise was spread over 1-2 months,
including 1 month for developing the infrastructure. At the end of that time,
it was used in the classroom. Developing the exercise only required about 150
lines of PHP and HTML code, and about 250 lines of Terraform templates,
mostly copied. The exercise process was very flexible and iterative because
Terraform keeps track of interconnected components.

The development of the Ransomware exercise was even more rapid (two
weeks), but it has not yet been tested in the classroom. Most importantly, the
ease of importing a unique and pre-existing exercise to our platform illustrates
the potential for adding many more exercises that are not just based on the
current ones.



Both new exercises introduced completely novel interfaces for student in-
teraction - a web application in the case of SQL Injection and a VNC desktop
in the case of the Ransomware. In both cases, the authors had access to EDU-
Range developers and were able to ask questions, but now this expands the
range of topics that can be taught.

7 Conclusion and Future Work

Two new exercises were developed rapidly by people who were not familiar
with the EDURange framework, which demonstrates that the framework has
the flexibility for instructors to create new exercises. In one case, they were
able to learn enough about the framework and develop an exercise in a matter
of weeks. In the other case, it took a little over a month. In both cases, the
authors had some specific learning goals in mind: in one case, teaching SQL
injection, in the other, teaching how ransomware works and how it connects
to modern cryptography. They differed in terms of the starting point. In one
case, there was already a script that could be used on Windows, and that had
to be translated from Windows to Linux and then integrated into EDURange.
In the other case, everything had to be created from scratch. Potentially most
cases will fall in between these two.

We expect that many instructors who teach cybersecurity have some tools
that they often use and are familiar with. In that case, finding or construct-
ing Docker containers with those tools and targets would be relatively fast,
even more so if Linux is already being used. If the instructors are developing
something new, provided the scope is reasonable, they should still be able to
develop something in less than one term and have it ready for the next one.

This process has uncovered several new features that we want to add to
EDURange. We plan to automate all of file copying and editing described in
Section 3. Beyond that, we would create a GUI that could run those scripts. In
addition, the Ransomware author has thought of a new exercise to be added.
The exercise was inspired by the challenge-based learning pedagogy where an
improperly configured Linux image and applications will be presented to the
students. By mitigating the challenges or adjusting the configuration of the
image, the student will receive flags to enter into the forms within EDURange
for a score. This exercise will add system security and proper privilege con-
figuration of users and the file system infrastructure to our list of topics. In
addition to the image, a descriptive list of exercise objectives will be provided
to the students as guiding reference so that they are properly informed of what
the ideal configuration should be.

10



References

[1]

Wenliang Du. Seed labs: Using hands-on lab exercises for computer secu-
rity education (abstract only). In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, SIGCSE ’15, page 704, New
York, NY, USA, 2015. Association for Computing Machinery.

github.com/fcwu. Docker-ubuntu-vnc-desktop. https://github.com/
fcwu/docker-ubuntu-vnc-desktop, 2021.

github.com/ncorbuk. Python-ransomware. https://github.com/
ncorbuk/Python-Ransomware, 2021.

Jelena Mirkovic and Terry Benzel. Teaching cybersecurity with DeterLab.
IEEE Security & Privacy, 10(1):73-76, 2012.

Ambareen Siraj and Sheikh Ghafoor. Crest-security knitting kit: Readily
available teaching resources to integrate security topics into traditional
cs courses (abstract only). In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, SIGCSE 18, page 1058, New
York, NY, USA, 2018. Association for Computing Machinery.

Blair Taylor and Siddharth Kaza. Security injections@towson: Integrating
secure coding into introductory computer science courses. ACM Trans.
Comput. Educ., 16(4), June 2016.

Michael F. Thompson and Cynthia E. Irvine. Individualizing cybersecurity
lab exercises with labtainers. IEEE Security € Privacy, 16(2):91-95, 2018.

Jan Vykopal, Radek Oslejsek, Pavel Celeda, Martin Vizvary, and Daniel
Tovarnak. Kypo cyber range: Design and use cases. In Cardoso J.,
Cardoso J., Maciaszek L., Maciaszek L., van Sinderen M., and Cabello
E., editors, Proceedings of the 12th International Conference on Software
Technologies - Volume 1: ICSOFT, pages 310-321, Madrid, Spain, 2017.
SciTePress.

R. Weiss, F. Turbak, J. Mache, and M. E. Locasto. Cybersecurity educa-
tion and assessment in EDURange. IEEFE Security € Privacy, 15(3):90-95,
2017.

Grant Wiggins and Jay McTighe. What is backward design. Understand-
ing by design, 1:7-19, 1998.

11



